VIBRATION SPECTRA OF MIXED CRYSTALS $Sc(PO_4, VO_4)$ AND $Y(PO_4, VO_4)$

Alexander MUCK, Olga SMRČKOVÁ and Bohumil HÁJEK

Department of Inorganic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received April 27th, 1981

Dedicated to Professor Dr J. Pick on the occasion of his 60th birthday.

Infrared spectra of mixed crystals $Sc(PO_4, VO_4)$ and $Y(PO_4, VO_4)$ have been studied from the point of view of group analysis. These systems form substitution mixed crystals in tetragonal space group D_{4h}^{19} . The anions having proper symmetry T_d or D_{2d} in site symmetry D_{2d} exhibit in spectra lowering of the *site* symmetry to effective C_2 as a result of lattice vibrations of the type $T(B_2)$.

Theoretically possible splitting of degenerated vibrations in 12 site groups, i.e. lowering of site symmetry to effective site symmetry¹, due to lattice vibrations has been followed so far only in mixed crystals T_d^4 for site symmetry T of tetrahedral phosphate, arsenate and vanadate anions²⁻⁴. In our study⁵ of infrared spectra of mixed crystals $Y(PO_4, VO_4)$ no agreement was found between theoretical spectrum for site symmetry D_{2d} and experimental spectrum of PO₄ and VO₄ anions of suitable concentration, which could indicate¹ limited validity of standard correlation method. Therefore, vibration spectra of this D_{4b}^{19} lattice were followed with samples of Sc(PO₄, VO₄) and Y(PO₄, VO₄) within whole concentration range and within whole region of internal vibrations of the anions. The spectra were analyzed from the point of view of further possible lowering of site symmetry to effective site symmetry and with respect to proper geometry of the anions.

EXPERIMENTAL

Samples of the pure compounds and mixed crystals were prepared by annealing of stoichiometric amounts of Sc_2O_3 and/or Y_2O_3 , $(NH_4)_2HPO_4$ and V_2O_5 at 1 000°C for 2 h. The powdered samples containing scandium were annealed anew at 1 300°C for 3 h., those containing yttrium were annealed at 1 200°C. The said temperatures were necessary for formation of the mixed crystals, which was verified by X-ray analysis of the samples annealed at 1 000, 1 100, 1 200 and 1 300°C. Mixed crystals of substitution type are formed in the whole concentration range.

The X-ray analysis was carried out with polycrystalline sample using a Geigerflex diffractograph (Rigaku Denki, Japan), Cu anode, Ni filter. The infrared spectra were measured with a Perkin-Elmer 325 spectrometer in KBr discs in the range 4 000 to 200 cm⁻¹.

The Raman spectra were measured with a Ramalog 3 apparatus (SPEX), excitation 488 nm with ${\rm Ar}^+$ laser (RCA), 200 mW output.

RESULTS AND DISCUSSION

The crystallographic data of the starting pure components necessary for structural interpretation of the vibration spectra were taken from literature. Phosphates⁶⁻⁹ and vanadates⁹⁻¹¹ crystallize in tetragonal space group D_{49}^{19} -*I*, Z = 4, G_M of the anions is T_d . From these data it is possible to obtain the data of the proper geometry of the anions (Table I). In the Table the value $(O-O)_{XO_4}$ means the distance of two neighbouring oxygen atoms in the anion, the first value is the distance of the atoms in xy plane.

The infrared spectrum of ScPO₄ was interpreted^{12,13} in the region 4 000 to 450 cm⁻¹ from the point of view of *site* symmetry D_{2d} for activation of totally symmetrical vibration A_1 . In the region 1 400 to 800 cm⁻¹ the splitting of v_3 vibration of IR spectrum of YPO₄ was interpreted¹⁴ as a manifestation of the *site* symmetry D_{2d} . The Raman spectrum of YPO₄ in the region 1 100 to 250 cm⁻¹ agrees with the *site*-group approach¹⁵. The IR spectrum of YVO₄ agrees¹⁶ with the factor-group approach D_{4h} , the vibration of E_u type being absent in the spectrum in the region of $v_4(T_d)$. According to ref.¹⁷ the group analysis of the Raman spectrum of YVO₄ fails due to birefringence of the crystal to the polarizability tensor, which changes activities of the vibrations. The spectrum of ScVO₄ in the mixed crystal Sc(PO₄, VO₄) was interpreted¹⁸ in the *site*-group approach D_{2d} , and the same is true of the Raman spectra¹⁹ of ScVO₄ and YVO₄ (the splitting at v_4 does not agree).

X-Ray Analysis

For verification of formation of the mixed crystals we evaluated the photographs of the powdered samples of the reaction mixtures annealed at various temperatures from 1 000 to 1 300°C. The lattice parameters a and c of tetragonal system were calculated from the line having the indexes 200 and 112, respectively, the accuracy being sufficient for determination of the parameter changes depending on composition. Values of the lattice parameters (Table II) agree with the Vegard law, *i.e.* they are directly proportional to the phosphate and vanadate content in the mixed crystals. The lattice parameters of the pure components agree very well with literature data⁹.

Infrared Spectra

ScPO₄, ScVO₄, YPO₄ and YVO₄ crystallize in tetragonal, space-centrered non-symorphous space group D_{4p}^{1-1} : $C_1(32)$, $2D_{2d}(4)$, $2C_{2h}(8)$, $2C_2(16)$, $C_s(16)$. Numbers

Collection Czechoslovak Chem. Commun. [Vol. 47] [1982]

of formula units in elementary and primitive cells are Z = 4 and $Z_p = 2$, respectively. The experimentally found site symmetry D_{2d} of phosphate and vanadate anions agrees unambiguously with frequency of location of the anions and with the group requirements. Nine normal vibrations of the anion are realized in the group T_d in the representations $A_1 + E + 2F_2$. According to the standard corelation method we would expect, in the first approximation, a lowering of molecular symmetry T_d to site symmetry D_{2d} (for the anions correspondingly diluted in the mixed crystal) or, in the second approximation, an enhancement of site symmetry D_{2d} to the symmetry of the factor group D_{4h} , i.e. $A_1 \rightarrow A_{1g} + B_{2u}$, $A_1 + B_1 \rightarrow A_{1g} + B_{2u} + A_{1u} + B_{2g}$, $B_2(IR) + E(IR) \rightarrow B_{1g} + A_{2u}(IR) + E_g + E_u(IR)$ (for the pure components).

TABLE I Geometry of the anions

Compound MeXO ₄	X—O pm	(O—O) _{XO4} pm	Symmetry XO ₄	
ScPO ₄	156	255	T _d	
ScVO ₄	176	271 and 292	D_{2d}	
YPO4	166	245 and 284	D_{2d}	
YVO4	164	270 and 268	$T_{\rm d}$	

TABLE II

Lattice parameters of the samples

$D_{4h}^{19} - I4_1/amd$	mol% PO4	a, pm	c, pm
	100	687·4	602.7
	80	690·1	605.2
$Y(PO_4, VO_4)$	70	692.7	607.5
	40	700·7	616.0
	20	703-9	623.5
	0	708.9	628-4
	100	656-1	578-1
	80	659-9	583.0
$Sc(PO_4, VO_4)$	50	665.7	592.9
	30	672·1	602.2
	0	676-6	611.4

1178

Od /of		PO4			V0 ³⁻	
1101/0, FO4	۲,۱	¥2	۶,	¥4	۳1	۲3
			Sc(PO ₄ , VO ₄)			
100 80	48 066	320, 365 310, 370	1 020, 1 080, 1 110 sh 1 030, 1 070	420, 515, 660 460 sh, 510, 655		
IR 50 30 0	990 985	310, 355 315, 350 	1 020, 1 070, 1 120 1 020, 1 075, 1 110 	460, <i>5</i> 20, 650 460, 535, 650 		850, 870 835, 910 sh 820, 920 sh
			$Y(PO_4, VO_4)$			
100 80	990 sh 975	255, 345 315, 340	1 030, 1 065, 1 095 sh 1 025, 1 055, 1 085 sh	375 sh?, 525, 645 450, 525, 640		
IR 70 20 0	975 965 	320, 335 290, 315 	1 015, 1 050, 1 090 sh 1 015, 1 060, 1 085 —	460, 525, 640 460, 535, 635 	900 sh 890 sh 885 sh	825 sh, 855 760, 835 775, 835, 855 sh
RA ScPO4 YPO.	1 030	325, 335 290. 330	1 045, 1 065 1 025. 1 060	410, 475, 595 480. 580. 660		

Collection Czechoslovak Chem. Commun. [Vol. 47] [1982]

1179

TABLE IV Correlation table of subgroups of the group $T_{\rm d}$

T _d (24)	D _{2d} (8)	S ₄ (4)	D ₂ (4)	C ₂ , (4)	C ₂ (2)	S ₁ (2)	C ₁ (1)
v1, A1 (RA)	<i>A</i> ₁ (RA)	$\mathcal{A}(\mathbf{RA})$	A (RA)	A1 (IR, RA)	A (IR, RA)	A' (IR, RA)	A (IR, RA)
$v_2, E(RA)$	A_1 (RA) B_1 (RA)	A (RA) B (IR, RA)	A (RA) A (RA)	A_1 (IR, RA) A_2 (RA)	A (IR, RA) A (IR, RA)	A' (IR, RA) A" (IR, RA)	A (IR, RA) A (IR, RA)
V. F. (IR RA)	B_2 (IR, RA)	B (IR, RA)	B_1 (IR, RA) R_2 (IR RA)	A_1 (IR, RA) R. (IR, RA)	A (IR, RA) R (IR RA)	A' (IR, RA) A' (IR_ RA)	A (IR, RA)
1 () 7 . (\$66.	E (IR, RA)	E(IR, RA)	B ₃ (IR, RA)	B_2 (IR, RA)	B (IR, RA)	A" (IR, RA)	A (IR, RA)

FIG. 1 IR spectra of Sc(PO₄, VO₄)

From the table of infrared spectra of the mixed crystals (Table III) it can be seen that the mixed crystals containing 30% ScPO4 and 20% YPO4 (and similarly also the mixed crystals with higher phosphate concentration, i.e. 50% and 70% of phosphates, respectively) exhibit activation of v_1 vibration, splitting and activation of v_2 , and further splitting of the vibrations v_3 and v_4 . Thus the spectrum does not correspond to the presumed site symmetry. This fact was mentioned in our previous paper⁵, and it was stated that the activation cannot be explained by standard (simple) way of interpretation of vibration spectra. However, the lowering of site symmetry can be accounted for in those groups in which lattice vibrations cause splitting and activation of internal vibrations. If in the symmetrized square of representation of degenerated vibration there exist such a representation to which a rotation or translation coordinate also belongs, then the lattice vibration of this representation can split or activate the respective internal mode. The corresponding separation of internal and lattice modes is, however, a physical prerequisite of this symmetry lowering. In the D_{2d} group the symmetrized square of representation of the degenerated vibration is $(\chi(E))_2 = A_1 + B_1 + B_2$. In the set of these representations there is B_2 which involves the translation T_z , *i.e.* lattice vibration of the type $T(B_2)$ which can split the degenerated vibration type E, and, in this way, lowering of site symmetry to effective site symmetry can occur. This theoretical possibility is fulfilled in the studied systems of mixed crystals in the case of samples $Sc((PO_4)_{0.5}(VO_4)_{0.5})$, $Sc((PO_4)_{0,3}(VO_4)_{0,7})$, $Y((PO_4)_{0,2}(VO_4)_{0,8})$, *i.e.* for a "diluted" PO₄ ion in site D_{2d} . From analysis of the infrared spectra (Table III, Figs 1 and 2) and with respect to the correlation table of subgroups of the group T_d (Table IV) it is thus obvious that the samples of mixed crystals exhibit effective site symmetry C_2 in spectrum of PO₄ anion. It was impossible to probe this lowering in spectra of VO_4^{3-} anion with all the concentrations of the mixed crystals due to overlapping of absorptions of the vibration v_3 and/or v_1 with v_3 . If the not very distinct shoulder in the region of v_3 is taken into account, then even for CO_4^{3-} anion it is possible to state a site symmetry lowering at least to D_2 or C_{2x} .

In the mixed crystals with sufficiently diluted PO_4 content the D_{2d} site symmetry is lowered to effective C_2 irrespective of proper geometry T_d or D_{2d} of PO_4^{3-} anion (Table I) which is higher than the effective site symmetry in the both cases. This finding confirms that a possible symmetry lowering in spectrum of 12 site groups¹ is due to lattice vibrations and not to a symmetry lowering resulting from deformation of the ions in crystal.

The infrared spectra of pure ScPO₄ and YPO₄ agree with neither the D_{2d} site symmetry (splitting and activation of v_2) nor the D_{4h} factor symmetry, but they exhibit shoulders indicating a *site* symmetry lowering to effective C_2 which is markedly manifested in the corresponding mixed crystals.

The Raman spectra of the pure phosphates (except for the region of v_3 vibration) also confirm $G_S \to G_S {}_{eff}$.

REFERENCES

- 1. Muck A.: Sb. Vys. Šk. Chemicko-Technol. Praze B 26, 141 (1981).
- 2. Hájek B., Muck A., Smrčková O.: This Journal 44, 823 (1979).
- 3. Hájek B., Muck A., Smrčková O.: This Journal 44, 3346 (1979).
- 4. Muck A., Čáp J., Hájek B.: This Journal 45, 3262 (1980).
- 5. Hájek B., Muck A.: J. Less-Common Metals 35, 339 (1974).
- 6. Mooney R. C. L., Kissinger H., Perloff A.: Acta Crystallogr. 7, 642 (1954).
- 7. Mooney R. C. L.: Acta Crystallogr. 9, 677 (1956).
- 8. Strada M., Schwendimann G.: Gazz. Chim. Ital. 64, 662 (1934).
- 9. Schwarz H.: Z. Anorg. Allg. Chem. 323, 44 (1963).
- 10. Broch E.: Z. Phys. Chem. (Leipzig) 20B, 345 (1933).
- 11. Milligan W. O., Watt L. M., Racheford H. H.: J. Phys. Chem. 53, 227 (1949).
- 12. Petrů F., Muck A.: Z. Anorg. Allg. Chem. 352, 330 (1967).
- 13. Muck A., Petrů F.: Z. Anorg. Allg. Chem. 383, 104 (1971).
- Tenisheva T. F., Pavlukevich T. M., Lazarev A. N.: Izv. Akad. Nauk SSSR, Ser. Khim. 1965, 1771.
- 15. Richman I.: J. Opt. Soc. Amer. 56, 1589 (1968).
- 16. Rast H. E., Caspers H. H., Miller S. A.: Phys. Rev. 169, 705 (1968).
- 17. Chaves A., Porto S. P. S.: Solid State Commun. 10, 1075 (1972).
- 18. Escobar M. E., Baran E. J.: Z. Naturforsch. 32b, 349 (1977).
- Baran E. J., Escobar M. E., Fournier L. L., Filgueira R. R.: Z. Anorg. Allg. Chem. 472, 193 (1981).

Translated by J. Panchartek.